TY - JOUR
T1 - The Scaffolding Protein RACK1 Interacts with Androgen Receptor and Promotes Cross-talk through a Protein Kinase C Signaling Pathway
AU - Rigas, Anastasia C.
AU - Ozanne, Daniel M.
AU - Neal, David E.
AU - Robson, Craig N.
PY - 2003/11/14
Y1 - 2003/11/14
N2 - The androgen receptor (AR), a member of the nuclear hormone receptor superfamily, functions as a ligand-dependent transcription factor that regulates genes involved in cell proliferation and differentiation. Using a C-terminal region of the human AR in a yeast two-hybrid screen, we have identified RACK1 (receptor for activated C kinase-1) as an AR-interacting protein. In this report we found that RACK1, which was previously shown to be a protein kinase C (PKC)-anchoring protein that determines the localization of activated PKCβII isoform, facilitates ligand-independent AR nuclear translocation upon PKC activation by indolactam V. We also observed RACK1 to suppress ligand-dependent and -independent AR transactivation through PKC activation. In chromatin immunoprecipitation assays, we demonstrate a decrease in AR recruitment to the AR-responsive prostate-specific antigen (PSA) promoter following stimulation of PKC. Furthermore, prolonged exposure to indolactam V, a PKC activator, caused a reduction in PSA mRNA expression in prostate cancer LNCaP cells. Finally, we found PKC activation to have a repressive effect on AR and PSA protein expression in androgen-treated LNCaP cells. Our data suggest that RACK1 may function as a scaffold for the association and modification of AR by PKC enabling translocation of AR to the nucleus but rendering AR unable to activate transcription of its target genes.
AB - The androgen receptor (AR), a member of the nuclear hormone receptor superfamily, functions as a ligand-dependent transcription factor that regulates genes involved in cell proliferation and differentiation. Using a C-terminal region of the human AR in a yeast two-hybrid screen, we have identified RACK1 (receptor for activated C kinase-1) as an AR-interacting protein. In this report we found that RACK1, which was previously shown to be a protein kinase C (PKC)-anchoring protein that determines the localization of activated PKCβII isoform, facilitates ligand-independent AR nuclear translocation upon PKC activation by indolactam V. We also observed RACK1 to suppress ligand-dependent and -independent AR transactivation through PKC activation. In chromatin immunoprecipitation assays, we demonstrate a decrease in AR recruitment to the AR-responsive prostate-specific antigen (PSA) promoter following stimulation of PKC. Furthermore, prolonged exposure to indolactam V, a PKC activator, caused a reduction in PSA mRNA expression in prostate cancer LNCaP cells. Finally, we found PKC activation to have a repressive effect on AR and PSA protein expression in androgen-treated LNCaP cells. Our data suggest that RACK1 may function as a scaffold for the association and modification of AR by PKC enabling translocation of AR to the nucleus but rendering AR unable to activate transcription of its target genes.
UR - http://www.scopus.com/inward/record.url?scp=0242495802&partnerID=8YFLogxK
U2 - 10.1074/jbc.M306219200
DO - 10.1074/jbc.M306219200
M3 - Artículo
C2 - 12958311
AN - SCOPUS:0242495802
SN - 0021-9258
VL - 278
SP - 46087
EP - 46093
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 46
ER -