Projects per year
Abstract
This paper introduces the TensorDB system, a frameworkthatfusesdatabaseinfrastructureandapplication software to streamline the development, training, evaluation and analysing machine learning models. The design principle is to track the whole model building process with database and connected different components by database query mechanism. This design produces a highly flexible framework enable each component to be updated independently. The theoretical value is that it enables continuous machine learning. TensorDB is motivated by production application of machine learning model as consolidation of many engineering practice, and is could be served as the foundation for high level tools for machine learning application.
Original language | American English |
---|---|
Title of host publication | International Conference for Artificial Intelligence |
State | Published - 2017 |
Fingerprint
Dive into the research topics of 'TensorDB: : Database Infrastructure for Continuous Machine Learning'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Automated literature reviews through text and data mining -meta data reviews Cochrane method aggregation of individual studies with Imperial College London
Guo, Y. (CoI), Villanustre, F. (CoI) & Hobby, M. (CoI)
10/1/15 → 03/1/20
Project: Research