Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms

Pasquale Minervini, Luca Costabello, Emir Muñoz, Vít Nováček, Pierre Yves Vandenbussche

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

38 Scopus citations

Abstract

Learning embeddings of entities and relations using neural architectures is an effective method of performing statistical learning on large-scale relational data, such as knowledge graphs. In this paper, we consider the problem of regularizing the training of neural knowledge graph embeddings by leveraging external background knowledge. We propose a principled and scalable method for leveraging equivalence and inversion axioms during the learning process, by imposing a set of model-dependent soft constraints on the predicate embeddings. The method has several advantages: (i) the number of introduced constraints does not depend on the number of entities in the knowledge base; (ii) regularities in the embedding space effectively reflect available background knowledge; (iii) it yields more accurate results in link prediction tasks over non-regularized methods; and (iv) it can be adapted to a variety of models, without affecting their scalability properties. We demonstrate the effectiveness of the proposed method on several large knowledge graphs. Our evaluation shows that it consistently improves the predictive accuracy of several neural knowledge graph embedding models (for instance, the MRR of TransE on WordNet increases by 11%) without compromising their scalability properties.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2017, Proceedings
EditorsMichelangelo Ceci, Saso Dzeroski, Celine Vens, Ljupco Todorovski, Jaakko Hollmen
PublisherSpringer Verlag
Pages668-683
Number of pages16
ISBN (Print)9783319712482
DOIs
StatePublished - 2017
Externally publishedYes
EventEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017 - Skopje, Macedonia, The Former Yugoslav Republic of
Duration: Sep 18 2017Sep 22 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10534 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2017
Country/TerritoryMacedonia, The Former Yugoslav Republic of
CitySkopje
Period09/18/1709/22/17

Fingerprint

Dive into the research topics of 'Regularizing Knowledge Graph Embeddings via Equivalence and Inversion Axioms'. Together they form a unique fingerprint.

Cite this