Predicting breakdowns in cloud services (with SPIKE)

Jianfeng Chen, Joymallya Chakraborty, Philip Clark, Kevin Haverlock, Snehit Cherian, Tim Menzies

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Maintaining web-services is a mission-critical task where any down- time means loss of revenue and reputation (of being a reliable service provider). In the current competitive web services market, such a loss of reputation causes extensive loss of future revenue. To address this issue, we developed SPIKE, a data mining tool which can predict upcoming service breakdowns, half an hour into the future. Such predictions let an organization alert and assemble the tiger team to address the problem (e.g. by reconguring cloud hardware in order to reduce the likelihood of that breakdown). SPIKE utilizes (a) regression tree learning (with CART); (b) synthetic minority over-sampling (to handle how rare spikes are in our data); (c) hyperparameter optimization (to learn best settings for our local data) and (d) a technique we called topology sampling where training vectors are built from extensive details of an individual node plus summary details on all their neighbors. In the experiments reported here, SPIKE predicted service spikes 30 minutes into future with recalls and precision of 75% and above. Also, SPIKE performed relatively better than other widely-used learning methods (neural nets, random forests, logistic regression).

Original languageEnglish
Title of host publicationESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering
EditorsSven Apel, Marlon Dumas, Alessandra Russo, Dietmar Pfahl
PublisherAssociation for Computing Machinery, Inc
Pages916-924
Number of pages9
ISBN (Electronic)9781450355728
DOIs
StatePublished - Aug 12 2019
Event27th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019 - Tallinn, Estonia
Duration: Aug 26 2019Aug 30 2019

Publication series

NameESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint Meeting European Software Engineering Conference and Symposium on the Foundations of Software Engineering

Conference

Conference27th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE 2019
Country/TerritoryEstonia
CityTallinn
Period08/26/1908/30/19

Keywords

  • Cloud
  • Data mining
  • Optimization
  • Parameter tuning

Fingerprint

Dive into the research topics of 'Predicting breakdowns in cloud services (with SPIKE)'. Together they form a unique fingerprint.

Cite this