TY - GEN
T1 - Large Scale Financial Filing Analysis on HPCC Systems
AU - Murray, Matthias
AU - Chala, Arjuna
AU - Xu, Lili
AU - Dev, Roger
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/12/10
Y1 - 2020/12/10
N2 - Insights from public companies' financial filings are necessary for securities analysts and investors to make the right investment decisions. Synthesizing salient facts from such filings is a complex language task, especially now as the data volume is growing at an overwhelming pace. To ease human labor in this process, our work proposed a financial filing analysis pipeline which automatically scrapes financial filings, generates the embeddings of the contextual data and performs sentiment analysis in order to predict future performance of the underlying companies. The pipeline is built on top of Big Data processing platform HPCC Systems to enable the capability of processing large amounts of financial filings in a scalable and timely manner. By applying word embedding and machine learning models to a large amount of SEC financial filings, our pipeline is able to process 20 GB of XBRL files - 5,000 filing documents for more than 3,500 companies - into 50,000 sentence embeddings within 5 minutes and transform the same data to TF-IDF embedding in about 8 minutes. To test sentiment analysis, we randomly sampled and manually labeled 5,000 SEC filings. As a result, the sentiment analysis suggested that the usefulness of stock price as a metric is specific to each industry and overall market, but is usable as long as the scope of inquiry is sufficiently narrow. Additionally, while our model is trained only on 5,000 manually labeled filings with unigrams and a final loss of 0.09, the results of the sentiment analysis exhibited discriminatory power exceeding naïve label selection through random or biased choice, suggesting that there is efficacy in using Natural Language Processing to analyze SEC filings.
AB - Insights from public companies' financial filings are necessary for securities analysts and investors to make the right investment decisions. Synthesizing salient facts from such filings is a complex language task, especially now as the data volume is growing at an overwhelming pace. To ease human labor in this process, our work proposed a financial filing analysis pipeline which automatically scrapes financial filings, generates the embeddings of the contextual data and performs sentiment analysis in order to predict future performance of the underlying companies. The pipeline is built on top of Big Data processing platform HPCC Systems to enable the capability of processing large amounts of financial filings in a scalable and timely manner. By applying word embedding and machine learning models to a large amount of SEC financial filings, our pipeline is able to process 20 GB of XBRL files - 5,000 filing documents for more than 3,500 companies - into 50,000 sentence embeddings within 5 minutes and transform the same data to TF-IDF embedding in about 8 minutes. To test sentiment analysis, we randomly sampled and manually labeled 5,000 SEC filings. As a result, the sentiment analysis suggested that the usefulness of stock price as a metric is specific to each industry and overall market, but is usable as long as the scope of inquiry is sufficiently narrow. Additionally, while our model is trained only on 5,000 manually labeled filings with unigrams and a final loss of 0.09, the results of the sentiment analysis exhibited discriminatory power exceeding naïve label selection through random or biased choice, suggesting that there is efficacy in using Natural Language Processing to analyze SEC filings.
KW - HPCC Systems
KW - Natural Language Processing
KW - SEC
KW - Sentiment Analysis
UR - http://www.scopus.com/inward/record.url?scp=85103834309&partnerID=8YFLogxK
U2 - 10.1109/BigData50022.2020.9378388
DO - 10.1109/BigData50022.2020.9378388
M3 - Contribución a la conferencia
AN - SCOPUS:85103834309
T3 - Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
SP - 4429
EP - 4436
BT - Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020
A2 - Wu, Xintao
A2 - Jermaine, Chris
A2 - Xiong, Li
A2 - Hu, Xiaohua Tony
A2 - Kotevska, Olivera
A2 - Lu, Siyuan
A2 - Xu, Weijia
A2 - Aluru, Srinivas
A2 - Zhai, Chengxiang
A2 - Al-Masri, Eyhab
A2 - Chen, Zhiyuan
A2 - Saltz, Jeff
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 8th IEEE International Conference on Big Data, Big Data 2020
Y2 - 10 December 2020 through 13 December 2020
ER -