Knowledge Graphs

Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia D’amato, Gerard De Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan Sequeda, Steffen Staab, Antoine Zimmermann

Research output: Contribution to journalArticlepeer-review

Abstract

In this article, we provide a comprehensive introduction to knowledge graphs, which have recently garnered significant attention from both industry and academia in scenarios that require exploiting diverse, dynamic, large-scale collections of data. After some opening remarks, we motivate and contrast various graph-based data models, as well as languages used to query and validate knowledge graphs. We explain how knowledge can be represented and extracted using a combination of deductive and inductive techniques. We conclude with high-level future research directions for knowledge graphs.
Original languageEnglish
JournalACM Computing Surveys
Volume54
Issue number4
DOIs
StatePublished - Jul 1 2021
Externally publishedYes

Keywords

  • Knowledge graphs
  • embeddings
  • graph algorithms
  • graph databases
  • graph neural networks
  • graph query languages
  • ontologies
  • rule mining
  • shapes

Fingerprint

Dive into the research topics of 'Knowledge Graphs'. Together they form a unique fingerprint.
  • DL: ICAI Discovery Lab

    van Harmelen, F. (CoPI), De Rijke, M. (CoI), Siebert, M. (CoI), Hoekstra, R. (CoPI), Tsatsaronis, G. (CoPI), Groth, P. (CoPI), Cochez, M. (CoI), Pernisch, R. (CoI), Alivanistos, D. (CoI), Mansoury, M. (CoI), van Hoof, H. (CoI), Pal, V. (CoI), Pijnenburg, T. (CoI), Mitra, P. (CoI), Bey, T. (CoI) & de Waard, A. (CoPI)

    10/1/1903/31/25

    Project: Research

Cite this