TY - JOUR
T1 - Identification of type IV collagenase in rat testicular cell culture: Influence of peritubular-Sertoli cell interactions
T2 - Influence of peritubular-Sertoli cell interactions
AU - Sprocket, Trevor
PY - 1990
Y1 - 1990
N2 - In the testis, interactions between peritubular cells (mesenchyme) and Sertoli cells (epithelium), together with proteolytic remodeling of the extracellular matrix, may play a central role in testicular development, morphogenesis, and spermatogenesis. In this study we demonstrate that a metalloproteinase of 72 kDa present in rat Sertoli cell and Sertoli-peritubular cell coculture medium is activated by p-aminophenylmercuric acetate (p-APMA) to a lower molecular mass form, indicating that it is likely to be a latent collagenase. Immunoblots using antibodies to three different domains of type IV collagenase show that the 72-kDa protease and a 76-kDa protease are type IV pro-collagenases. Sertoli cells cultured alone produce basal levels of type IV collagenase that can be immunolocalized in the cytoplasm of cultured cells. Peritubular cells cultured alone produce much less type IV collagenase. However, Sertoli and peritubular cells in coculture do produce type IV pro-collagenase, and in cultures consisting predominantly of peritubular cells, the activated form of type IV collagenase was detected by both zymography and immunoblotting. Cells growing during the transitional phase (from cell attachment to confluence) secrete more metalloproteinases than during the confluent phase. In contrast, plasminogen activator levels are unaffected by time in culture. These results show that rat testicular cells in culture produce and secrete type IV collagenase, and that the secretion and activation of this enzyme and other metalloproteases is regulated by the ratio of mesenchymal cells to epithelial cells and time in culture.
AB - In the testis, interactions between peritubular cells (mesenchyme) and Sertoli cells (epithelium), together with proteolytic remodeling of the extracellular matrix, may play a central role in testicular development, morphogenesis, and spermatogenesis. In this study we demonstrate that a metalloproteinase of 72 kDa present in rat Sertoli cell and Sertoli-peritubular cell coculture medium is activated by p-aminophenylmercuric acetate (p-APMA) to a lower molecular mass form, indicating that it is likely to be a latent collagenase. Immunoblots using antibodies to three different domains of type IV collagenase show that the 72-kDa protease and a 76-kDa protease are type IV pro-collagenases. Sertoli cells cultured alone produce basal levels of type IV collagenase that can be immunolocalized in the cytoplasm of cultured cells. Peritubular cells cultured alone produce much less type IV collagenase. However, Sertoli and peritubular cells in coculture do produce type IV pro-collagenase, and in cultures consisting predominantly of peritubular cells, the activated form of type IV collagenase was detected by both zymography and immunoblotting. Cells growing during the transitional phase (from cell attachment to confluence) secrete more metalloproteinases than during the confluent phase. In contrast, plasminogen activator levels are unaffected by time in culture. These results show that rat testicular cells in culture produce and secrete type IV collagenase, and that the secretion and activation of this enzyme and other metalloproteases is regulated by the ratio of mesenchymal cells to epithelial cells and time in culture.
UR - http://www.scopus.com/inward/record.url?scp=0025605577&partnerID=8YFLogxK
U2 - 10.1095/biolreprod43.6.956
DO - 10.1095/biolreprod43.6.956
M3 - Article
SN - 0006-3363
VL - 43
SP - 956
EP - 964
JO - Biology of Reproduction
JF - Biology of Reproduction
IS - 6
ER -