Dynamic Clustering of Streaming Short Documents.

Shangsong Liang, Emine Yilmaz, Evangelos Kanoulas

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

53 Scopus citations


Clustering technology has found numerous applications in mining textual data. It was shown to enhance the performance of retrieval systems in various different ways, such as identifying different query aspects in search result diversification, improving smoothing in the context of language modeling, matching queries with documents in a latent topic space in ad-hoc retrieval, summarizing documents etc. The vast majority of clustering methods have been developed under the assumption of a static corpus of long (and hence textually rich) documents. Little attention has been given to streaming corpora of short text, which is the predominant type of data in Web 2.0 applications, such as social media, forums, and blogs. In this paper, we consider the problem of dynamically clustering a streaming corpus of short documents. The short length of documents makes the inference of the latent topic distribution challenging, while the temporal dynamics of streams allow topic distributions to change over time. To tackle these two challenges we propose a new dynamic clustering topic model - DCT - that enables tracking the time-varying distributions of topics over documents and words over topics. DCT models temporal dynamics by a short-term or long-term dependency model over sequential data, and overcomes the difficulty of handling short text by assigning a single topic to each short document and using the distributions inferred at a certain point in time as priors for the next inference, allowing the aggregation of information. At the same time, taking a Bayesian approach allows evidence obtained from new streaming documents to change the topic distribution. Our experimental results demonstrate that the proposed clustering algorithm outperforms state-of-the-art dynamic and non-dynamic clustering topic models in terms of perplexity and when integrated in a cluster-based query likelihood model it also outperforms state-of-the-art models in terms of retrieval quality.
Original languageAmerican English
Title of host publicationKDD '16 Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
StatePublished - 2016


Dive into the research topics of 'Dynamic Clustering of Streaming Short Documents.'. Together they form a unique fingerprint.
  • Dynamic User Interests

    Liang, S., Ren, Z., Zhao, Y., Yilmaz, E., Kanoulas, E., Ma, J., De Rijke, M. & Hobby, M.


    Project: Research

Cite this