TY - JOUR
T1 - An integrative computational approach to evaluate genetic markers for chronic lymphocytic leukemia
AU - Zheng, Yu
AU - Li, Xiaoyang
AU - Manor, Lydia C.
AU - Cao, Hongbao
AU - Chen, Qiusheng
N1 - Publisher Copyright:
© 2017, Mary Ann Liebert, Inc.
PY - 2017/9
Y1 - 2017/9
N2 - Recent studies reported hundreds of genes linked to chronic lymphocytic leukemia (CLL). However, many of these candidate genes were lack of replication and results were not always consistent. Here, we proposed a computational workflow to curate and evaluate CLL-related genes. The method integrates large-scale literature knowledge data, gene expression data, and related pathways/network information for quantitative marker evaluation. Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analysis were conducted to study the pathogenic profile of the candidate genes, with four metrics proposed and validated for each gene. By using our approach, a scalable CLL genetic database was developed including CLL-related genes, pathways, diseases and information of supporting references. The CLL case/control classification supported the effectiveness of the four proposed metrics, which successfully identified nine well-studied CLL genes (i.e., TNF, BCL2, TP53, VEGFA, P2RX7, AKT1, SYK, IL4, and MDM2) and highlighted two newly reported CLL genes (i.e., PDGFRA and CSF1R). The computational biology approach and the CLL database developed in this study provide a valuable resource that may facilitate the understanding of the genetic profile of CLL.
AB - Recent studies reported hundreds of genes linked to chronic lymphocytic leukemia (CLL). However, many of these candidate genes were lack of replication and results were not always consistent. Here, we proposed a computational workflow to curate and evaluate CLL-related genes. The method integrates large-scale literature knowledge data, gene expression data, and related pathways/network information for quantitative marker evaluation. Pathway Enrichment, Sub-Network Enrichment, and Gene-Gene Interaction analysis were conducted to study the pathogenic profile of the candidate genes, with four metrics proposed and validated for each gene. By using our approach, a scalable CLL genetic database was developed including CLL-related genes, pathways, diseases and information of supporting references. The CLL case/control classification supported the effectiveness of the four proposed metrics, which successfully identified nine well-studied CLL genes (i.e., TNF, BCL2, TP53, VEGFA, P2RX7, AKT1, SYK, IL4, and MDM2) and highlighted two newly reported CLL genes (i.e., PDGFRA and CSF1R). The computational biology approach and the CLL database developed in this study provide a valuable resource that may facilitate the understanding of the genetic profile of CLL.
KW - chronic lymphocytic leukemia
KW - genetic network analysis
KW - literature data mining
KW - pathway enrichment analysis
KW - sub-network enrichment analysis
UR - http://www.scopus.com/inward/record.url?scp=85029397096&partnerID=8YFLogxK
U2 - 10.1089/cmb.2017.0041
DO - 10.1089/cmb.2017.0041
M3 - Artículo
C2 - 28570130
AN - SCOPUS:85029397096
SN - 1066-5277
VL - 24
SP - 942
EP - 952
JO - Journal of Computational Biology
JF - Journal of Computational Biology
IS - 9
ER -