A survey of large language models for data challenges in graphs

Mengran Li, Pengyu Zhang, Wenbin Xing, Yijia Zheng, Klim Zaporojets, Junzhou Chen, Ronghui Zhang, Yong Zhang, Siyuan Gong, Jia Hu, Xiaolei Ma, Zhiyuan Liu, Paul Groth, Marcel Worring

Research output: Contribution to journalReview articlepeer-review

Abstract

Graphs are a widely used paradigm for representing non-Euclidean data, with applications ranging from social network analysis to biomolecular prediction. While graph learning has achieved remarkable progress, real-world graph data presents a number of challenges that significantly hinder the learning process. In this survey, we focus on four fundamental data-centric challenges: (1) Incompleteness, real-world graphs have missing nodes, edges, or attributes; (2) Imbalance, the distribution of the labels of nodes or edges and their structures for real-world graphs are highly skewed; (3) Cross-domain Heterogeneity, graphs from different domains exhibit incompatible feature spaces or structural patterns; and (4) Dynamic Instability, graphs evolve over time in unpredictable ways. Recently, Large Language Models (LLMs) offer the potential to tackle these challenges by leveraging rich semantic reasoning and external knowledge. This survey focuses on how LLMs can address four fundamental data-centric challenges in graph-structured data, thereby improving the effectiveness of graph learning. For each challenge, we review both traditional solutions and modern LLM-driven approaches, highlighting how LLMs contribute unique advantages. Finally, we discuss open research questions and promising future directions in this emerging interdisciplinary field. To support further exploration, we have curated a repository of recent advances on graph learning challenges: https://github.com/limengran98/Awesome-Literature-Graph-Learning-Challenges.

Original languageEnglish
Article number129643
JournalExpert Systems with Applications
Volume298
DOIs
StatePublished - Mar 1 2026

Keywords

  • Cross-domain graph heterogeneity
  • Data imbalance
  • Dynamic graph instability
  • Graph incompleteness
  • Graph learning
  • Large language models

Fingerprint

Dive into the research topics of 'A survey of large language models for data challenges in graphs'. Together they form a unique fingerprint.

Cite this